114 research outputs found

    Matrix Models and Gravitational Corrections

    Full text link
    We provide evidence of the relation between supersymmetric gauge theories and matrix models beyond the planar limit. We compute gravitational R^2 couplings in gauge theories perturbatively, by summing genus one matrix model diagrams. These diagrams give the leading 1/N^2 corrections in the large N limit of the matrix model and can be related to twist field correlators in a collective conformal field theory. In the case of softly broken SU(N) N=2 super Yang-Mills theories, we find that these exact solutions of the matrix models agree with results obtained by topological field theory methods.Comment: 18 pages, 1 figure. References added and minor correction

    Topological M-theory as Unification of Form Theories of Gravity

    Get PDF
    We introduce a notion of topological M-theory and argue that it provides a unification of form theories of gravity in various dimensions. Its classical solutions involve G_2 holonomy metrics on 7-manifolds, obtained from a topological action for a 3-form gauge field introduced by Hitchin. We show that by reductions of this 7-dimensional theory one can classically obtain 6-dimensional topological A and B models, the self-dual sector of loop quantum gravity in 4 dimensions, and Chern-Simons gravity in 3 dimensions. We also find that the 7-dimensional M-theory perspective sheds some light on the fact that the topological string partition function is a wavefunction, as well as on S-duality between the A and B models. The degrees of freedom of the A and B models appear as conjugate variables in the 7-dimensional theory. Finally, from the topological M-theory perspective we find hints of an intriguing holographic link between non-supersymmetric Yang-Mills in 4 dimensions and A model topological strings on twistor space.Comment: 65 pages, 2 figures, harvmac; v2: references added, small corrections/clarification

    Negative Branes, Supergroups and the Signature of Spacetime

    Full text link
    We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3 branes, we show that SU(0N)SU(0|N) supergroup theories are holographically dual to an exotic variant of type IIB string theory on dS3,2×Sˉ5dS_{3,2} \times \bar S^5, for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov's instanton calculus, all of which agree, we derive the Seiberg-Witten curve for N=2 SU(NM)\mathcal N=2 ~SU(N|M) gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, though several puzzles remain.Comment: 66 pages, 12 figures. V2: additional references, minor typo correction

    A Perturbative Window into Non-Perturbative Physics

    Get PDF
    We argue that for a large class of N=1 supersymmetric gauge theories the effective superpotential as a function of the glueball chiral superfield is exactly given by a summation of planar diagrams of the same gauge theory. This perturbative computation reduces to a matrix model whose action is the tree-level superpotential. For all models that can be embedded in string theory we give a proof of this result, and we sketch an argument how to derive this more generally directly in field theory. These results are obtained without assuming any conjectured dualities and can be used as a systematic method to compute instanton effects: the perturbative corrections up to n-th loop can be used to compute up to n-instanton corrections. These techniques allow us to see many non-perturbative effects, such as the Seiberg-Witten solutions of N=2 theories, the consequences of Montonen-Olive S-duality in N=1* and Seiberg-like dualities for N=1 theories from a completely perturbative planar point of view in the same gauge theory, without invoking a dual description.Comment: 38 pages, 9 figure

    Perturbative analysis of gauged matrix models

    Get PDF
    We analyze perturbative aspects of gauged matrix models, including those where classically the gauge symmetry is partially broken. Ghost fields play a crucial role in the Feynman rules for these vacua. We use this formalism to elucidate the fact that nonperturbative aspects of [script N] = 1 gauge theories can be computed systematically using perturbative techniques of matrix models, even if we do not possess an exact solution for the matrix model. As examples we show how the Seiberg-Witten solution for [script N] = 2 gauge theory, the Montonen-Olive modular invariance for [script N] = 1*, and the superpotential for the Leigh-Strassler deformation of [script N] = 4 can be systematically computed in perturbation theory of the matrix model or gauge theory (even though in some of these cases an exact answer can also be obtained by summing up planar diagrams of matrix models)
    corecore